Location
The UT Health Science Center is located in San Antonio, a historic and culturally diverse city with a population of more than 1.3 million.

Cultural and recreational opportunities abound, including the historic downtown with the Alamo and Riverwalk.

Financial Support
• Stipend is $26,000
• Resident tuition and fees are paid by the doctoral program
• Basic student health benefits are also paid by the institution

APPLICATIONS ARE REVIEWED BY IBMS FACULTY AND HIGHLY QUALIFIED APPLICANTS ARE INVITED FOR INTERVIEWS BEGINNING EARLY IN THE SPRING SEMESTER.

For more information:
Program Coordinator
UT Health Science Center SA
7703 Floyd Curl Dr.
San Antonio, TX
78229

210.567.4220
pharmgrad@uthscsa.edu

pharmacology.uthscsa.edu/P-P.html

INTEGRATED BIOMEDICAL SCIENCES
GRADUATE PROGRAM

Physiology & Pharmacology

PHYSIOLOGY | PHARMACOLOGY
Cardiovascular | Endocrine | Aging | Neurophysiology | Cancer Neuropharmacology | Pain

UT Health Science Center
SAN ANTONIO

GRADUATE SCHOOL OF BIOMEDICAL SCIENCES
SAN ANTONIO
Overview

The Physiology & Pharmacology graduate training discipline encompasses the study of fundamental mechanisms that underlie cellular and systems level function and dysfunction. In addition, this discipline examines how drugs influence these systems, with the ultimate goal being to better treat human disease. This discipline offers distinct curricular tracks for training in both classical Physiology and Pharmacology. However, for students who wish, it also provides the opportunity for interdisciplinary training that will bridge these fields and provide exposure to knowledge and skills ranging from the detailed characterization and principles of drug-receptor interactions through to systems level analyses of physiological processes.

Major Areas of Research

Cardiovascular Physiology
- Vascular, cardiac, endocrine and neural mechanisms that together govern cardiovascular function to identify novel molecular targets for improved treatment of cardiovascular disease.

Neurophysiology
- Molecular and cellular mechanisms of nervous system function. Physiology, regulation and functional role of ion channels, and their involvement in disease states.

Physiological basis of aging
- Basic biology of aging encompassing molecular, cellular and physiological mechanisms of aging, and recent advances in genetic and drug interventions that extend life and prevent age-associated disease.

Pharmacology:
- Drug-receptor interactions including allosterism and functional selectivity, as well as therapeutics.

Endocrinology:
- Control of feeding behavior, obesity, diabetes and stress responsivity.

Pain:
- Molecular and cellular mechanisms of pain to better understand and treat acute and chronic pain.

Neuropharmacology:
- Novel molecular and behavioral pharmacological approaches to better understand neuropsychiatric diseases such as addiction, schizophrenia and major depression.